Wireless Sigcon

WSC-10A / WSC-10B

User's Manual

Sensor is source of technology

株式会社 イージーメジャー

安全にご使用いただくために

正しく安全に使用していただくために、下記の注意事項を 必ずお守りください

■本書に使用する記号の意味は次のとおりです。

1 警告	ここに記載された事項を守らない場合、 人体に危害を被る危険があります。
	マンド きまとしょ 古古と かくよい 相人 藍

こに記載された事項を守らない場合、物 的損害の発生する危険があります。

■注意事項

🚹 注意

●ガス中での使用 <u> 警</u>告

可燃性・爆発性のガスまたは蒸気などの ある場所で、機器を動作または保管しな いでください。

●ACアダプタ

感雷や火災防止のため、ACアダプタは 必ず製品に付属のものをご使用くださ い。

●電源

供給電源の電圧が、機器の電源電圧に 合っていること確認した上で、機器の電 源を接続してください。

●電源コード

雷源コードの上に重いものを乗せたり、 熱源に触れたりしないように、十分に注 意してください。コードに傷がつくと感電 や火災の原因となります。

●接続

感電や機器の故障を防止するために、 測定対象や外部機器との接続は、必ず 本体および本体に接続している機器の 電源を切った状態で行ってください。

●短絡

信号入力およびその他のコネクタ、端子 のグランドやコモンは共通になっている ものがあります。複数の信号源や機器を 接続する場合には、これらの端子を介し たショートに注意してください。

●過大入力

入力端子などに、それぞれの仕様の範 囲を超える過大な電圧・電流を加えない でください。故障および火災、感電の原 因となります。

●分解・改造

本体を分解したり・改造したりしないでく ださい。感電・火災・故障の原因となりま す。

●異常時の処置

次のような場合には、すぐACアダプタを コンセントから抜いて使用を中止し、販売 代理店もしくは当社の営業所に直接ご連 絡ください。

- ・本体内部に水その他の異物が入った場 合。
- 本体から炎や煙が出たり、変な臭いが する場合。
- ケースその他の部品に破損を見つけた 場合。

- ・ほこり・粉塵の多い場所。
- ・直射日光のあたる場所。
- ・高温になる場所。
- 振動・衝撃の加わる場所。
- ・水・油・薬品などのかかる場所。
- ・腐食・可燃・爆発性ガスのある場所。

 ・電気的ノイズが多く飛び交う場所。 本製品はなりべく温度変化の少ない常温

に近い場所を選んで運用・保管してくだ さい。

●配線

ノイズによる誤動作防止や計測誤差を少 なくするため、装置本体およびそれに接 続されるケーブル類は、高電圧や動力ケ ーブルなどのノイズ源から、できるだけ 離してご使用ください。

受信機・送信機とも、供給可能な 電源電圧の範囲が最大15Vに変更 されました(従来は最大 25V)。15V 以上の電源を接続 すると装置が破壊されますので注意してください。

はじめに

この度は Wireless Sigcon(以下 WSC)をお買い上げい ただきありがとうございます。

本書は、WSC 送信機、受信機本体およびホストパソコン 側ソフトウェアの機能、運用方法、取り扱い上の注意点など について説明しています。この製品の性能を十分に活用し ていただくために、ご使用前によくお読みください。また、 本書をいつでもご利用いただけるよう大切に保管してくださ い。

■一般的な注意事項

- ・この製品を持ち運ぶときは、必ずACアダプタおよびその 他のケーブル類を外したことを確認してください。
- 運搬や運用の際、本製品に衝撃を与えないでください。
 故障の原因となります。
- ・この製品を運用する場合には、あらかじめ機能および性 能が正常であることを確認した上でご使用ください。
- 仕様に記された規格を外れて使用された場合や、改造された場合には機能および性能の保証はできません。
- ・使用条件や環境などにより、本製品の機能および性能が 満足できない場合もありますので、十分にご検討の上 で運用してください。
- 本製品が万一故障した場合、さなざまな損害を防止する ための安全対策を十分に施してご使用ください。

■保証

この製品は厳重な品質管理と製品検査を経て出荷して おりますが、万一故障や不具合がありましたら、販売代理店 もしくは当社の営業所へ直接ご連絡ください。

なお、本製品の保証期間は12ヶ月です。この間に発生し た故障および不具合で、原因があきらかに当社の責任と判 定された場合には無償で修理いたします。

■その他

- お客様または第三者による使用の誤り、使用中に生じた 故障、その他の不具合またはこの製品の使用によって 被られた損害(事業利益の損失・事業の中断・記憶内容の変化や消失その他)については、当社は一切責任を 負いませんのであらかじめご了承ください。
- ・本書に記載した仕様・意匠・価格などは、改良のため予 告なしに変更することがあります。
- ・本書に記した社名・商品名などは各社の商標または登録 商標です。
- ・本書の内容の全部または一部を無断で転載あるいは複 製することはお断りします。

梱包内容を確認してください

本製品を開封したら、ご使用前に下記の本体・付属品類 がすべて揃っていることを確認してください。万一、お届け した品の間違いや不足、外観に異常があった場合には、ご 購入先にご連絡ください。

WSC-10A / WSC-10B 梱包品一覧

【送信機側】

1. WSC 送信機本体	×1台
2. WSC 送信機アンテナ	×1本
3. アナログ入力コネクタ(16P)	×1 個
4. 送信機用 AC アダプタ(DC9V•1.3A)	×1個

【受信機側】

5.	WSC 受信機本体	×1台
6.	WSC 受信機アンテナ	$\times 1 本$
7.	アナログ出力コネクタ(16P)	×1個
8.	受信機用 AC アダプタ(DC9V・1.3A)	imes 1個
9.	USB ケーブル	$\times 1 本$

【その他】

10. パソコン用ソフトウェア CD	×1枚
11. 取扱説明書(本書)	$\times 1 \boxplus$
12. ユーザー登録カード	$\times 1$ 枚

WSC オプション販売品

- 1. **WSC** RS232C ケーブル (WSC-CBL-□□m)
 - … WSC 受信機の RS232C 出力を使用して計測を行なう 場合に使用するケーブルです。
- 2. WSC 有線ケーブル (WSC-CBL-□□m)
 - … WSC 送信機 ~ WSC 受信機間を有線で接続して使用 する場合に使用するケーブルです。
- 3. **DC IN** ケーブル (WSC-DCIN-□□m)
 - … AC100V の供給されない環境で WSC を使用する場合に、外部 DC 電源を接続するためのケーブルです。
- 4. 送信機用電池ボックス (PBOX-8)

— 目次一

概要

1.	システム構成・・・・・	7
2.	概略的な機能と特長	7
•	送信機~受信機間通信・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
•	送信機に入力可能なアナログ信号・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
•	受信機から出力する計測データの形態	7

本体各部の説明

1.	送信機	8
•	前面	8
•	背面	8
2.	受信機······	9
	前面	9
	背面	9

ソフトウェアのインストール

1.	アプリケーションのインストール	10
2.	USBドライバのインストール·····	11

本体の接続

1. コネクタおよび端子台の結線方法	12
・ネジ止めコネクタの結線方法・・・・・・	12
2. 送信機・アナログ信号入力の接続	12
・送信機・アナログ信号入力部の回路構成	12
・送信機・アナログ信号入力の接続方法	13
3. 受信機・アナログ電圧出力の接続	13
・受信機・アナログ電圧出力部の回路構成	13
・受信機・アナログ電圧出力の接続方法	14
4. 受信機・RS2320 出力の接続	14
・受信機・RS232C コネクタのピン・アサイン	14
• WSC RS232C ケーブルの結線	15
・ WSC RS232C ケーブル接続の注意点	15
5.送信機~受信機間の有線接続	15
・有線接続コネクタのピン・アサイン	15
・WSC 有線ケーブルの結線	15
・WSC 有線ケーブル接続の注意点・・・・・・・・・・	16
 電源の接続・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
・電源入力部の回路構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
 外部 DC 電源の接続方法	·16

— 目次一

WSC を使用した計測の実行

1.	アナログ入出力レンジの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
•	・アナログ入出カレンジの設定方法	17
•	アナログ入出カレンジ設定の注意点	17
2.	送信機の接続・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
З.	受信機の接続・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
4.	送受信機間の通信確立・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
-	・無線による送信機~受信機間通信	18
•	・有線による送信機~受信機間通信	19
5.	計測データのモニタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
-	アナログ電圧出力によるモニタ	19
•	RS2320 出力によるモニタ	19
•	USBによるモニタ	21

仕様

1	. 送信機仕様	22
	・一般仕様・・・・・	22
	 アナログ信号入力詳細仕様 	22
2	. 受信機仕様	22
	• 一般仕様·····	22
	 アナログ電圧出力詳細仕様 	22
	・RS232C 出力詳細仕様	22
	 USB 出力詳細仕様	22
З	. 送信機~受信機通信仕様	22
	・A タイプ/B タイプ共通仕様	22
	・A(近距離通信)タイプ 無線仕様	·23
	・B(中距離通信)タイプ 無線仕様	·23
4	. 添付ソフトウェア仕様	23

外形図

1.	送信機・・・・・・	24
2.	受信機	24

ブロック図

1.	送信機・・・・・	25
2.	受信機······	25

概要

1. システム構成

WSCは、送信機に入力されたアナログ信号を、無線で受信機へ送信する無線式信号変換器です。

WSC は下の図1のように WSC 送信機(以下送信機)と WSC 受信機(以下受信機)の1対1の構成で使用します。複 数台の送信機と1台の受信機による1対nの構成では使用 できません。

なお、この図には表されていませんが、送信機へ入力す るアナログ信号のレンジ、受信機から出力するアナログ電 圧のレンジを設定するためのパソコンが必要となります。

図1. システム構成図

2. 概略的な機能と特長

送信機~受信機間通信

送信機~受信機間は基本的に無線で通信します。注文 時に下記A/Bの2タイプの無線方式を選択可能です。

- ・Aタイプ:低価格の近距離無線通信仕様
- ・Bタイプ:信頼性重視のSS中距離無線通信仕様

いずれのタイプでも、使用周波数を本体前面のロータリスイ ッチで16チャンネルから選択可能です。

 \diamond

送信機~受信機間を有線接続で通信することも可能です。 電波の届きにくい、もしくは無線の使用できない環境で使 用する場合には有線接続で使用してください。有線接続は、 オプションの『WSC 有線ケーブル』を使用してください。

送信機に入力可能なアナログ信号

送信機には下記のようなシングルエンドの電圧信号また は熱電対を接続することができます。

◆電圧信号

・±10V/±1V/±100mV/±10mVから選択

◆熱電対

・B/E/J/K/N/R/S/T 型から選択

入力レンジは、チャンネル毎に異なる形式に設定可能で す。

送信機は、これらのアナログ入力信号をAD変換して受 信機に送信します。

受信機から出力する計測データの形態

受信機は、送信機から受信した信号を下記の形態で出力 します。

◆アナログ出力

- 外部に設けられたアナログ入力式のデータ・レコーダ等
 への接続を対象としています。
- ・出力レンジはチャンネル毎に任意の値に設定可能です。

RS232C

- ・外部に設けられたシーケンサ/パソコン等への接続を対象としています。
- ・計測データはテキスト形式で出力します。
- ・RS232C ケーブルはオプションの『WSC RS323C ケーブ ル』を使用してください。

♦USB

- ・パソコンとの接続を対象としています。
- ・計測は専用のアプリケーション・ソフトで行います。

本体各部の説明

1. 送信機

凶2. 达信城平冲的

1 Power:

電源スイッチ。

$\ensuremath{\textcircled{}}$ to Rx unit:

送信機~受信機間を有線で接続する場合のコネクタで す。電波の届きにくい、もしくは無線の使用できない環 境で使用する場合のみ有線で接続してください。有線 接続のケーブルはオプションの『WSC 有線ケーブル』 を使用してください。

3 USB:

現バージョンの送信機では使用しません。このコネクタ でパソコンと送信機の接続は行えません。

4 Mode:

送信機~受信機間の接続方法を無線(Radio)/有線 (Cable)で選択します。電波の届きにくい、もしくは無線 の使用できない環境で使用する場合のみ有線で接続し てください。

5 Channel:

送信機~受信機間の無線周波数を設定するスイッチで す。通信する送信機と受信機は必ず同じ値に設定する 必要があります。スイッチの設定と無線周波数の関係は 17 ページを参照してください。

6 Connect:

送信機~受信機の通信状態を表示します。 送信機~受信機間の通信が確立している場合には緑 色に、通信障害が発生している場合には赤色に点灯し ます。

(1) Analog Input;

アナログ信号入力用のコネクタです。専用のソケットに 入力信号のケーブルを結線し、このヘッダと接続してく ださい。

0 DC IN:

ACアダプタ接続用コネクタです。ACアダプタは必ず付 属品を使用してください。

③ Antenna:

無線のアンテナを接続するコネクタです。アンテナは必ず付属品を使用してください。

1. 受信機

図5. 受信機本体背面

1 Power:

電源スイッチ。

② from Tx unit:

送信機~受信機間を有線で接続する場合のコネクタで す。電波の届きにくい、もしくは無線の使用できない環 境で使用する場合のみ有線で接続してください。有線 接続のケーブルはオプションの『WSC 有線ケーブル』 を使用してください。

3 USB:

パソコンとの接続に使用する USB コネクタです。

④ Mode:

送信機~受信機間の接続方法を無線(Radio)/有線 (Cable)で選択します。電波の届きにくい、もしくは無線 の使用できない環境で使用する場合のみ有線で接続し てください。

(5) Channel:

送信機~受信機間の無線周波数を設定するスイッチで す。通信する送信機と受信機は必ず同じ値に設定する 必要があります。スイッチの設定と無線周波数の関係は 17 ページを参照してください。

6 Connect:

送信機~受信機の通信状態を表示します。 送信機~受信機間の通信が確立している場合には緑 色に、通信障害が発生している場合には赤色に点灯し ます。

① Analog Output:

アナログ電圧出力用のコネクタです。送信機から受信し た計測データを DA 変換してアナログ電圧で出力しま す。

専用のソケットに出力信号のケーブルを結線し、このヘ ッダと接続してください。

2 **RS232C:**

送信機から受信したデータを RS232C インターフェイス で出力するコネクタです。RS232C ケーブルはオプショ ンの『WSC RS232C ケーブル』を使用してください。

$\ensuremath{\textcircled{}}$ DC IN:

ACアダプタ接続用コネクタです。ACアダプタは必ず付 属品を使用してください。

(4) Antenna:

無線のアンテナを接続するコネクタです。アンテナは必ず付属品を使用してください。

ソフトウェアのインストール

1. アプリケーションのインストール

WSC は、送信機に入力するアナログ信号のレンジ、受信 機から出力するアナログ電圧のレンジをパソコンのソフトウ ェアで設定します。WSC を運用する前に、必ずソフトウェア のインストールを行ってください。ソフトウェアは、設定用の 「WSC_Setup.exe」と、計測用の「WSC_Measure.exe」の2種類 がインストールされます。

ソフトウェアのインストールは下記の手順で行います。

- 他のアプリケーションをすべて終了させ、付属の CD を パソコンに挿入し、『Setup.EXE』を実行してください。
- Setup が起動すると図6のような画面が表されます。『次 へ』ボタンをクリックしてください。
- ③ インストール先のフォルダを変更する場合には、図7画 面の『変更』ボタンをクリックして表示される図8画面を操 作してインストール先を指定してください。
- ④ 次に、図9の画面が表示されます。『インストール』ボタン をクリックするとインストールを開始し図10の画面が表示 されます。
- ⑤ 正常にインストールを完了すると図 11 の画面が表示されますので『完了』ボタンをクリックしてください。

図6. インストール画面1

図7. インストール画面2

図8. インストール画面3(フォルダ指定)

🙀 Wireless Sigcon - InstallShield Wizard	×
ブログラムをインストールする準備ができました	
ウィザードは、インストールを開始する準備ができました。	
インストールの設定を参照したり変更する場合は、「戻る」をクリックしてください。「キャンセル」をクリックすると、ウイザードを終了します。	
現在の設定:	
セットアップ タイプ:	
AND KEIL #PAIL #	
C:¥Program Files¥WSC¥	
고	
-CB91. 500 会社:	
unsceloned く戻る(B) インスドール世 キャンセル	1
	-

図9. インストール画面4

図 10. インストール画面5

図 11. インストール画面6

2. USB ドライバーのインストール

次に、WSC用のUSBドライバーをインストールします。送 信機に入力するアナログ信号のレンジ設定、受信機から出 力するアナログ電圧のレンジ設定は、パソコンと受信機を USB インターフェイスで接続して行います。

実際の計測時に USB を使用しない場合でも、下記の手順で USB ドライバーを必ずインストールしてください。

- Windows 上のアプリケーションを全て終了させ、付属の CD をパソコンに挿入します。
- ② 受信機本体の電源を投入し、USBケーブルでパソコンと 接続します。しばらくすると図12の画面が表示されます。 ここで、『ソフトウェアを自動的にインストールする(推 奨)』をチェックし、『次へ』ボタンをクリックします。
- ③ 図 13 の画面が表示された後、自動的に CD のドライバ ーを検索し、パソコンにインストールされます。正常にイ ンストールが完了すると、図 14 の画面が表示されます。
- ④ Windows のバージョンによっては、図 15 のようなメッセ ージが表示される場合があります。この場合、『参照』ボタ ンをクリックし、図 16 画面で CDドライブの『USB Driver』 フォルダを指定して『OK』ボタンをクリックしてください。
- ⑤ USBドライバーが正しくインストールされると、図17のように、Windowsの『コントロールパネル』にあるデバイス・マネージャの『KYUSB用USBデバイス』下に『WSC受信機』が表示されます。

図 12. USB ドライバーのインストール画面1

図 13. USB ドライバーのインストール画面2

図 14. USB ドライバーのインストール画面3

図 15. USB ドライバーのインストール画面4

図 16. USB ドライバーのインストール画面5

図 17. USB ドライバーのインストール画面6

本体の接続

1. コネクタおよび端子台の結線方法

ネジ止めコネクタの結線方法

WSC は、送信機のアナログ信号入出部および受信機の アナログ電圧出力部にネジ止めコネクタを使用しています。 このコネクタの結線方法を説明します。

◆入力信号線とソケット側コネクタの結線方法

- 小型のドライバーを使用してソケット上部のネジを反時 計方向に廻し、電線挿入部十分に開きます。
- ② 右図のように、先端を5mm 剥いた電線を挿入し、上部 のネジを時計方向に廻して 電線をしっかり固定します。
- ③ 固定後、電線を軽く引 っ張って抜けないこと を確認して下さい。 また、ソケット内部の固 定金属が、電線の被覆 を挟み込んでいないこ とを確認して下さい。

◆ソケット側コネクタと本体の接続

下図のように、ソケットのネジ部が上になるように本体 側のコネクタへ差し込んでください。差し込んだ後、本体 側コネクタ上部のスリットがソケット側の突起をかみ込んで、 軽く引っ張っても抜けないことを確認してください。

◆接続可能な電線のサイズ

単線: φ 0.4~ φ 1.2(AWG26~AWG16) 撚線:0.3~1.25mm²(AWG22~AWG16)

(ただし、素線径は¢0.18以上) 上記の範囲の電線が使用できますが、不用意な引き抜きに よる誤動作を避けるため、単線の場合は¢1.2、撚線の場合 には 1.25mm²の電線を使用されることを推奨します。また、 撚線を使用する場合には先端を捻って挿入してください。

2. 送信機・アナログ信号入力の接続

送信機には8チャンネルのアナログ電圧信号または熱電 対の信号を入力することができます。

送信機・アナログ信号入力部の回路構成

図18のように、 \pm 10Vおよび \pm 1Vの入力レンジが選択さ れた場合、送信機の Analog Input [+]]端子は、110k Ω と 11k Ω の抵抗アッテネータを介して AD コンバータに接続 されます。また、 \pm 100mV、 \pm 10mV 入力レンジおよび熱電 対入力が選択された場合、図 19 のように Analog Input [+]]端子は直接 AD コンバータに接続されます。

送信機の Analog Input 『-』端子は一括して送信機内部 でアナログ入力コモンに短絡されます。複数の信号源を接 続する場合には、送信機を経由した信号源間の一側の短 絡に注意してください。

また、このアナログ入力コモンは、送信機内部の GND ラ イン(有線接続用コネクタの GND ピン、USB コネクタの 0V ピンで外部に露出)から+1.5V の電位を持っています。送 信機外部に接続される機器の GND ラインと、信号源の一側 は絶対に短絡させないでください。

図 18. 入力レンジ±10V, ±1V 設定時の入力回路

図 19. 入力レンジ±100mV, ±10mV, 熱電対設定時の入力回路

送信機・アナログ信号入力の接続方法

◆個別シールド線を使用して接続する場合

チャンネルごとにシールドされたケーブルを使用する場 合には、図20のように信号源の+側を芯線、-側をシール ドにして接続します。シールド線は大地アースや筐体アー スなどに接続しないでください。

また、ノイズの混入やケーブルの浮遊容量の影響を少な くするため、信号源から本体までの距離(入力ケーブルの 長さ)も極力短くしてご使用ください。

図 20. 個別シールドを使用したアナログ入力の結線

◆一括シールド線を使用して接続する場合

複数のチャンネルが一括してシールドされたケーブルを 使用する場合には、図21のように信号源の+側と-側を芯 線にし、一括シールドは本体のいずれかのチャンネルの-側に接続します。シールド線は大地アースや筐体アースな どに接続しないでください。このような一括シールド線使用 する場合には、図21のように+側と-側をツイストペアとす ることを推奨します。

また、ノイズの混入やケーブルの浮遊容量の影響を少な くするため、信号源から本体までの距離(入力ケーブルの 長さ)も極力短くしてご使用ください。

図 21. 一括シールドを使用したアナログ入力の結線

3. 受信機・アナログ電圧出力の接続

受信機は8チャンネルのアナログ電圧を出力します。

受信機・アナログ電圧出力部の回路構成

図22ようにDAコンバータのアナログ出力はバッファ回路 を介して外部に出力されます。

受信機の Analog Output 『-』端子は一括して内部の GND ラインに短絡されます。複数のアナログ測定器を接続 する場合には、受信機を経由した測定器間の一側入力の 短絡に注意してください。

また、この GND ラインは、有線接続用コネクタの GND ピン、USB コネクタの 0V ピン、RS232C コネクタの GND ピンで 外部に露出しています。受信機に接続されるアナログ測定 器のー側入力と、シーケンサ、パソコンなどの GND ラインの 短絡にも十分注意してください。

受信機・アナログ電圧出力の接続方法

◆個別シールド線を使用して接続する場合

チャンネルごとにシールドされたケーブルを使用する場 合には、図 23 のようにアナログ出力の+側を芯線、-側を シールドにして接続します。シールド線は大地アースや筐 体アースなどに接続しないでください。

また、ノイズの混入やケーブルの浮遊容量の影響を少な くするため、受信機本体から外部測定機器までの距離(出 カケーブルの長さ)も極力短くしてご使用ください。

図 23. 個別シールドを使用したアナログ出力の結線

◆一括シールド線を使用して接続する場合

複数のチャンネルが一括してシールドされたケーブルを 使用する場合には、図 24 のようにアナログ出力の+側と-側を芯線にし、一括シールドは受信機本体のいずれかの チャンネルのー側に接続します。シールド線は大地アース や筐体アースなどに接続しないでください。このような一括 シールド線使用する場合には、図 24 のように+側とー側を ツイストペアとすることを推奨します。

また、ノイズの混入やケーブルの浮遊容量の影響を少な くするため、受信機本体から外部測定機器での距離(出力 ケーブルの長さ)も極力短くしてご使用ください。

4. 受信機・RS232C 出力の接続

受信機には、計測データをシーケンサやパソコン等の外 部測定機器へ RS23C インターフェイスで出力するための miniDIN-8 ピン・コネクタを設けています。

このコネクタには、必ずオプションの『**WSC** RS232C ケー ブル』を接続してください。

ここでは、受信機の **RS232C** コネクタの接続について解 説します。

受信機・RS232C コネクタのピン・アサイン

受信機に設けられた RS232C コネクタのピン配置および ピン・アサインは下の図 25、表1のとおりです。

図 25. 受信機 RS232C コネクタのピン配置

ピン番号	信号名称	方向
1	未接続	—
2	TxD	受信機 → 外部機器
3	RxD	受信機 ← 外部機器
4	未接続	—
5	GND	—
6	未接続	—
7	予 約	—
8	予 約	—

表1. 受信機 RS232C コネクタのピン・アサイン

WSC RS232C ケーブルの結線

WSC のオプションとして提供される『WSC RS232C ケーブ ル』は下図のように結線されています。

図 26. WSC RS232C ケーブル(オプション)の結線

WSC RS232C ケーブル接続の注意点

◆コネクタの勘合

『WSC RS232C ケーブル』を使用する場合、受信機側のソ ケットにケーブル側のプラグを根元まで強く押し込んでくだ さい。コネクタを中途半端に勘合させると誤動作の原因とな りますので注意してください。

◆外部接続機器間の短絡

RS232CコネクタのGNDピンは、受信機の内部のGNDラ インに接続されています。このGNDラインは、アナログ出力 のー側、有線接続用コネクタのGNDピン、USBコネクタの 0Vピンで外部に露出しています。受信機に複数の外部機 器を接続する場合には、受信機を経由した機器間のGND ラインの短絡に十分注意してください。

5. 送信機~受信機間の有線接続

WSC の送信機~受信機間は基本的に無線で通信します が、これを有線接続で通信することも可能です。電波の届き にくい、もしくは無線の使用できない環境で使用する場合 には有線接続で使用してください。

有線接続用のコネクタとして、送信機、受信機ともに6ピン・モジュラー・コネクタを設けています。このコネクタの接続はオプションの『WSC 有線ケーブル』を使用してください。

ここでは、送信機〜受信機間の有線接続について解説します。

有線接続コネクタのピン・アサイン

送信機および受信機の有線接続用コネクタのピン配置お よびピン・アサインは下の図 27、表2、表3のとおりです。

図 27. 送信機・受信機 有線接続コネクタのピン配置

ピン番号	信号名称	方向
1	未接続	—
2	TxD	送信機 → 受信機
3	RxD	送信機 ← 受信機
4	未接続	—
5	GND	—
6	未接続	—

表2. 送信機 有線接続コネクタのピン・アサイン

ピン番号	信号名称	方向
1	未接続	—
2	RxD	受信機 ← 送信機
3	TxD	受信機 → 送信機
4	未接続	—
5	GND	—
6	未接続	—

表3. 受信機 有線接続コネクタのピン・アサイン

WSC 有線ケーブルの結線

WSCのオプションとして提供される『WSC 有線ケーブル』 は下図のように結線されています。

6ピン	・モジュラー	6ピン・モジ	ュラー
(プラ・	グ)	(プ	゚ラグ)
1			1
2			2
3			3
4—			-4
5			- 5
6			6

図 28. WSC 有線接続ケーブル(オプション)の結線

WSC 有線ケーブル接続の注意点

◆コネクタの勘合

『WSC 有線ケーブル』は送信機、受信機ともプラグ・コネ クタのフックがカチッと音がするまで挿入してください。コネ クタを中途半端に勘合させると誤動作の原因となりますので 注意してください。

◆外部接続機器間の短絡

送信機と受信機を有線で接続すると、送信機と受信機の GND ラインが電気的に接続されます。

受信機のGNDラインは、有線接続のGNDピン、アナログ 出力の一側、RS232CコネクタのGNDピン、USBコネクタの OVピンで外部に露出し、送信機のGNDラインは、有線接続 のGNDピン、USBコネクタのOVピンで外部に露出していま す。送信機と受信機を有線で接続すると、これらすべてのコ ネクタに接続される機器のGNDラインが短絡されることにな ります。

さらに、送信機のアナログ信号入力の一側は上記の GNDラインから1.5Vの電位を持っています。送信機のアナ ログ信号入力に接続される信号源の一側と、上記 GND ライ ンとは絶対に短絡させないでください。

6. 電源の接続

WSC の電源は、送信機・受信機とも基本的に AC アダプ タを使用します。AC アダプタは必ず付属品(送信機、、受 信機とも DC9V・1.3A)を使用してください。

AC100Vの供給されない環境で使用する場合には、オプ ションの『DC IN ケーブル』を使用してください。この場合の 接続は下記の記述に従ってください。

電源入力部の回路構成

送信機および受信機の電源入力部の回路構成は図 29 のとおりです。

図 29. 送信機・受信機 本体電源入力部の回路

外部 DC 電源の接続方法

外部 DC 電源装置と本体は、オプションの『DC IN ケーブ ル』を使用して下の図 30 のように結線してください。

図 30. 外部 DC 電源の接続

電源入力ラインのスパイク・ノイズなどの影響をさけるため、図30のように『DC IN ケーブル』はツイストして使用することを推奨します。また、ノイズ混入、ケーブルの抵抗分による電圧降下を少なくするために、外部DC 電源装置と本体間の距離(DC IN ケーブルの長さ)は極力短くしてご使用ください。

送信機の供給する電源の許容電圧範囲は DC5~25V、 受信機に供給する電源の許容電圧範囲は DC8~25V とな っています。

 \land

全語 受信機の異なるインターフェイスに 接続される外部機器の GND ライン の短絡に十分注意してください。受信機の GND ライン は、アナログ出カコネクタの一側、RS232C コネクタの GND ピン、USB コネクタの 0V ピン、有線接続コネクタ の GND ピンで共通となっています。

<u> </u>警告

このた場合には送信機と受信機の GND ラインが電気的に短絡します。受信機の外部に接続される機器と、送信機に接続される信号源は、必ず電気 的に絶縁させてください。送信機~受信機間の GND ラ インが短絡されるために、送信機のアナログ信号入力 のー側は、受信機のGNDラインからも 1.5V の電位を 持つことになります。

送信機~受信機間を有線で接続し

WSC 送信機および受信機の全ての 入出カラインには、サージアブソー バなどの保護回路は設けられていません。信号また は電源ラインにサージなどの混入する環境で使用す ると、本体の回路が破壊される可能性があります。や むをえず使用する場合には、入出カラインにサージア ブソーバやバリスタ等の保護回路を付加してください。

WSC を使用した計測の実行

WSC を使用した計測は基本的に下記の手順で行います。 ①アナログ入出力レンジの設定

- ・・・送信機に入力するアナログ信号のレンジ、受信機から
 出力するアナログ電圧レンジを設定します。
 (受信機の RS232C 出力または受信機の USB インター
 フェイスを使用した計測の場合、アナログ電圧レンジの設定は不要です。)
- ②送信機の接続
- ・・・送信機に、計測する信号源を接続します。
 ③受信機の接続
- … 受信機のアナログ電圧出力、RS232C 出力、USB イン ターフェイスいずれかの出力形態を選択し、測定機器 を接続します。
- ④送受信機間通信の確立
- ※ 送信機~受信機間の通信方法を無線または有線から 選択し、送受信機間の通信を確立させます。
- ⑤計測データのモニタ

… 送信機、受信機を使用して実際の計測を行います。

この章では上記の運用手順の詳細について解説します。

1. アナログ入出カレンジの設定

送信機に入力するアナログ信号のレンジ設定、受信機か ら出力するアナログ電圧のレンジ設定の方法について解説 します。

アナログ入出カレンジの設定方法

送信機に入力するアナログ信号のレンジ設定、受信機か ら出力するアナログ電圧のレンジ設定は、専用のアプリケ ーション・ソフト(WSC セットアップ・ソフトウェア)を使用して 受信機に対して行います。

この設定の手順は下記のとおりです。

- 受信機本体の電源を投入し、USB ケーブルでパソコン に接続します。受信機の電源投入後、USB インターフェ イスを介してパソコンに認識されるまで数十秒の時間が 必要です。
- ② パソコンにインストールした WSC セットアップ・ソフトウェ ア『WSC_Setup.EXE』を起動します。
- ③ 図 31 のような画面が表示されます。画面上段で送信機 に入力するアナログ信号のレンジを選択してください。
- ④ 画面下段の表で、受信機から出力するアナログ電圧の レンジを設定します。最大値桁に受信機が最大電圧 (+10V)を出力する際の入力電圧値または温度を入力し ます。最小値桁に受信機が最小電圧(-10V)を出力する 際の入力電圧値または温度を入力します。

⑤ 設定が完了したら、ツールバーの『ダウンロード』ボタン (右端)をクリックしてください。設定された内容を受信機 本体にダウンロードします。

すでに受信機に設定されているアナログ入出力レンジを 読み出して WSC セットアップ・ソフトウェアの画面に反映す ることも可能です。

パソコンと受信機の USB 接続が確立した状態(前述の手 順②の状態)で、画面のツールバーの『アップロード』ボタン (右から2番目)をクリックしてください。受信機に設定されて いるアナログ入出力レンジを読み込んで WSC セットアップ・ ソフトウェアの画面に反映します。

💡 Wireless Sigcon Se	tup Softwar	e						_0,
ファイル(E) WSC(W) ハ	リルブ(田)							
🛱 🖬 🛛 📅 📅								
┌送信様・アナログ入2	カレンジーー							
Ch1 Ch	2	Ch3	Ch4	Ch5	Ch6	Ch	7	Ch8
±10V - ±	10V 💌	±10V 💌	±10V		▼ ±10	V 💌 ±	10V 💌	±10V 💌
- 受信機・アナログ出)	りレンジー							
	Ch1 (V)	Ch2 (V)	Ch3 (V)	Ch4 (V)	Ch5 (V)	Ch6 (V)	Ch7 (V)	Ch8 (V)
最大值(+5V出力)	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000	10.0000
最小値(-5V出力)	-10.0000	-10.0000	-10.0000	-10.0000	-10.0000	-10.0000	-10.0000	-10.0000
38400bps	¥							
2	_							

図 31. WSC セットアップ・ソフトウェアの画面

アナログ入出カレンジ設定の注意点

◆温度入力範囲

選択される熱電対形式と温度入力範囲の関係は下表のと おりです。

熱電対形式	入力レンジ
В	250°C∼1820°C
E	−200°C~1000
J	-210°C∼1200
К	-200°C∼1370
Ν	-200°C∼1300
R	$-50^{\circ}C\sim 1760$
S	$-50^{\circ}C\sim 1760$
Т	-200°C~400

表4. 熱電対形式と入力可能な温度範囲

◆アナログ入出カレンジの設定対象

送信機に入力するアナログ信号のレンジ設定、受信機か ら出力するアナログ電圧のレンジ設定、双方とも受信機に 対して行います。

送信機に入力するアナログ信号のレンジ設定は、送受信 機間の通信確立時に、受信機から送信機ヘリレー形式で自 動的にダウンロードされます。パソコンの WSC セットアップ・ ソフトウェアから送信機に対する設定操作は行えませんの で注意してください。

◆アナログ入出力レンジの記録

送信機に入力するアナログ信号のレンジ設定、受信機か ら出力するアナログ電圧のレンジ設定は、双方とも受信機 の Flash メモリに記録され、電源遮断後も喪失することはあり ません。

受信機の電源投入時、Flash メモリに記録されたアナログ 入出力レンジの設定が読み込まれ、その設定内容にしたが った計測が再開されます。

2. 送信機の接続

送信機に計測対象とする信号源を接続します。接続は、 前述の『本体の接続』の章、『送信機・アナログ信号入力の 接続』の項で解説した内容をよく理解したうえでおこなって ください。

3. 受信機の接続

下記のように、使用する出力形態にしたがって、受信機 に測定機器を接続します。

◆受信機のアナログ電圧出力を使用した計測の場合 受信機にアナログ入力式のデータ・レコーダ等を接続し てください。接続は、前述の『本体の接続』の章、『受信機・ アナログ電圧出力の接続』の項で解説した内容をよく理解 したうえでおこなってください。

◆受信機の RS232C 出力を使用した計測の場合

オプションの『WSC RS323C ケーブル』を使用して、受信 機と外部測定機器(シーケンサ、パソコン等)の RS232C ポ ートを接続してください。接続は、前述の『本体の接続』の 章、『受信機・RS232C 出力の接続』の項で解説した内容を よく理解したうえでおこなってください。

◆受信機の USB ケーブルを使用した計測の場合

付属の USB ケーブルを使用して、受信機とパソコンを接続してください。USB ケーブルは必ず付属品を使用してください。

4. 送受信機間の通信確立

WSC は、送信機~受信機間の通信を無線または有線から選択することができます。

計測を実行する前に、送信機〜受信機間の通信方法を 選択してください。

無線による送信機~受信機間通信

◆無線による通信の選択

送信機および受信機の本体前面の Mode スイッチを Radio 側に設定します。Mode スイッチの設定は必ず送信 機・受信機とも Radio 側に設定してください。 Mode スイッチの操作は、送信機、受信機とも本体の電源 を遮断した状態でおこなってください。Mode スイッチの読 み込みは、送信機・受信機とも本体の電源起動時にのみお こなわれます。本体動作中(通電中)に Mode スイッチを操 作しても無線/有線の変更はできません。

◆無線周波数の選択

使用する無線周波数を、本体前面の Channel ロータリス イッチで選択します。 Channel ロータリスイッチの設定は必 ず送信機・受信機側とも同じ設定にしてください。

Channel ロータリスイッチの操作は、送信機、受信機とも 本体の電源を遮断した状態でおこなってください。 Channel ロータリスイッチの読み込みは、送信機・受信機と も本体の電源起動時にのみおこなわれます。本体動作中 (通電中)に Channel ロータリスイッチを操作しても無線周 波数は変更できません。

 \diamond

WSC には、低価格の近距離無線、信頼性重視の中距離 無線の2タイプがラインナップされ、注文時に指定可能です。 この無線タイプによって使用する周波数が異なります。無線 タイプと Channel ロータリスイッチの設定で選択される無線 周波数は表5、表6のとおりです。

【近距離無線タイプ】

設 定	無線周波数 ARIB-STD66 モード	設 定	無線周波数 ARIB-STD66 モード
0	2401MHz	8	2440MHz
1	2405MHz	9	2445MHz
2	2410MHz	А	2450MHz
3	2415MHz	В	2455MHz
4	2420MHz	С	2460MHz
5	2425MHz	D	2465MHz
6	2430MHz	Е	2470MHz
7	2435MHz	F	2475MHz

表5. 近距離無線タイプで選択可能な無線周波数

【中距離無線タイプ】

設 定	無線周波数 ARIB-STD66 モード	設定	無線周波数 ARIB- STD33 モード
0	2448MHz	8	2474MHz
1	2451MHz	9	2477MHz
2	2454MHz	А	2480MHz
3	2457MHz	В	2483MHz
4	2460MHz	С	2486MHz
5	2463MHz	D	2489MHz
6	2466MHz	Е	2492MHz
7	2469MHz	F	2495MHz

表6. 中距離無線タイプで選択可能な無線周波数

◆送信機~受信機間無線通信の確立

送信機および受信機の無線周波数を選択し、電源を投 入すると、しばらく(十数秒後)して自動的に送信機~受信 機の無線通信が確立されます。

通信が確立されると、送信機および受信機本体前面の Connect ランプが緑色に点灯します。このランプが赤色に 点灯している場合はに通信が確立されていません。送信機 および受信機の電源投入後、十数秒たっても Connect ラン プが赤色→緑色に変化しない場合には、下記の2点をチェ ックしてください。

- ・送信機、受信機のModeスイッチは双方ともRadio側に設 定されているか?
- ・送信機、受信機の Channel ロータリスイッチは同じ値に設 定されているか?

上記の2点に間違いがないにもかかわらず、通信が確立で きない場合には、何らかの要因により無線電波が妨害され ている可能性があります。送信機および受信機の Channel ロータリスイッチを0~F まで変更し、通信の確立できる周波 数を探索してください。

有線による送信機~受信機間通信

◆有線による通信の選択

送信機および受信機の本体前面の Mode スイッチを Cable 側に設定します。Mode スイッチの設定は必ず送信 機・受信機側とも Cable 側に設定してください。

Mode スイッチの操作は、送信機、受信機とも本体の電源 を遮断した状態でおこなってください。Mode スイッチの読 み込みは、送信機・受信機とも本体の電源起動時にのみお こなわれます。本体動作中(通電中)に Mode スイッチを操 作しても無線/有線の変更はできません。

◆送信機~受信機間有線通信の確立

WSC を有線接続で運用する場合には、オプションの 『WSC 有線ケーブル』を使用し、送信機本体前面の to Rx unit コネクタと受信機本体前面の from Tx unit コネクタを 接続します。接続は、前述の『本体の接続』の章、『送信機 ~受信機間の有線接続』の項で解説した内容をよく理解し たうえでおこなってください。

送信機~受信機を有線接続し、電源を投入すると、しば らく(十数秒後)して自動的に送信機~受信機の無線通信 が確立されます。

通信が確立されると、送信機および受信機本体前面の Connect ランプが緑色に点灯します。このランプが赤色に 点灯している場合はに通信が確立されていません。送信機 および受信機の電源投入後、十数秒たってもConnect ラン プが赤色→緑色に変化しない場合には、送信機、受信機 の Mode スイッチが双方とも Radio 側に設定されているかど うかを確認してください。

有線接続が確立した場合、送信機〜受信機の通信は、 38400bpsのRS232Cで実行されます。

5. 計測データのモニタ

送信機~受信機の通信を確立したら下記の方法で計測 データのモニタをおこなうことができます。

- ・アナログ電圧出力によるモニタ
- ・RS232C 出力によるモニタ
- ・USB インターフェイスによるモニタ

ここでは各モニタ方法の詳細について解説します。

アナログ電圧出力によるモニタ

受信機から出力されるアナログ電圧を使用してモニタを おこないます。外部に設けられたアナログ入力式のデータ・ レコーダ等を使用した計測を対象としています。

この計測方法ではパソコン等の操作は特に必要ありません。受信機のアナログ電圧出力は、送信機〜受信機の通信 確立と同時に開始され、送受信機間の通信が正常に行な われている間は、継続して更新・出力され続けます。この電 圧を外部に設けたアナログ入力式のデータ・レコーダ等で モニタしてください。

RS232C出力によるモニタ

受信機の RS232C 出力を使用してモニタをおこないます。 外部に設けられた、シーケンサ/パソコン等を使用した計測 を対象としています。

受信機のRS232C出力は、送信機~受信機の通信確立と 同時に開始され、送受信機間の通信が正常に行なわれて いる間は、継続して更新・出力され続けます。外部機器から のRS232C出力開始/停止制御は必要ありません。

◆通信仕様

受信機の RS232C 出力の通信仕様は下表のとおりです。 現バージョンの WSC ではこの仕様を変更することはできま せん。

同期	調歩同期式(非同期)
ビット/秒	38400bps
データ・ビット	8Bit
パリティ	なし
ストップ・ビット	1Bit
フロー制御	なし

表7. 受信機・RS232C 出力の通信仕様

◆計測データの出力フォーマット

計測データは下図のようなテキスト列で出力されます。 各チャンネルの計測値は、テキスト形式の数値と単位で 構成され、チャンネルとチャンネルの間はカンマ(,)で区切 られます。Ch8 までのデータした後には、終端コード CR (0x0d)とLF(0x0a)が付加されます。

送信順序→

項目	Ch1 データ &単位	区切	Ch2 データ &単位	区切	\sim
Byte		,		,	

	Ch3 データ	区	Ch4 データ	区	
\sim	&単位	切	&単位	切	\sim
	•••	,	•••	,	

	Ch5データ	区	Ch6データ	区	
\sim	&単位	切	&単位	切	\sim
		,		,	

~	Ch7データ &単位	区切	Ch8デー &単位	A	終	端
		,			CR	LF

図 32. 受信器の RS232C から出力されるテキスト列

上記テキスト列のなかのデータ&単位の項目は複数の文 字で構成され、その形式はアナログ信号入力レンジの設定 にしたがい、下記の表のような出力フォーマットとなります。 表の左端の『計測値』枠に記された値の電圧(または温度) が送信機に入力されると、右側の『出力されるテキスト』枠に 記されたテキスト列が受信機の RS232C から出力されます。

『出力されるテキスト』枠に記されている□は空白文字 (0x20)を表します。

計測値	出力	出力されるテキスト							
10V			1	0		0	0	0	V
5V				5		0	0	0	V
0V				0		0	0	0	V
-5V			-	5		0	0	0	V
-10V		-	1	0		0	0	0	V
バ仆数	1	2	3	4	5	6	7	8	9
	送信	訓育	⇒						

表8. ±10Vの入力レンジに設定されたチャンネルの データおよび単位の出力フォーマット例 計測値 出力されるテキスト

1.0V			1		0	0	0	0	V
0.5V			0		5	0	0	0	V
0.0V			0		0	0	0	0	V
-0.5V		-	0		5	0	0	0	V
-1.0V		-	1		0	0	0	0	V
バイト数	1	2	3	4	5	6	7	8	9
	送信	順序	\rightarrow						

<u>表9. ±1Vの入力レンジに設定されたチャンネルの</u> <u>データおよび単位の出力フォーマット例</u>

計測値	出	出力されるテキスト								
100mV			1	0	0	•	0	0	m	V
50mV				5	0	•	0	0	m	V
0mV					0		0	0	m	V
-50mV			-	5	0		0	0	m	V
-100mV		-	1	0	0		0	0	m	V
バ仆数	1	2	3	4	5	6	7	8	9	10
	送	言順	茅→							

表 10. ±100mVの入力レンジに設定されたチャンネルの データおよび単位の出力フォーマット例

計測値	出	出力されるテキスト								
10mV			1	0		0	0	0	m	V
5mV				5	•	0	0	0	m	V
0mV				0		0	0	0	m	V
-5mV			-	5		0	0	0	m	V
-10mV		-	1	0		0	0	0	m	V
バイト数	1 送(2 言順F	3 ≩→	4	5	6	7	8	9	

表 11. ±10mV の入力レンジに設定されたチャンネルの データおよび単位の出力フォーマット例

計測値	出ナ	出力されるテキスト							
1000°C		1	0	0	0		0	0	С
500°C			5	0	0	•	0	0	С
10°C				1	0		0	0	С
0°C					0	•	0	0	С
-10°C			-	1	0		0	0	С
−500°C		-	5	0	0		0	0	С
バ小数	1	2	3	4	5	6	7	8	9
	送信	訓明序	\rightarrow						

表 12. 温度の入力レンジに設定されたチャンネルの データおよび単位の出力フォーマット例

USBによるモニタ

受信機とパソコンを USB で接続してモニタをおこないま す。計測は専用のWSC 計測ソフトウェアを使用し、下記のよ うな手順でおこないます。

- パソコンにインストールした WSC 計測ソフトウェア 『WSC_Measure.EXE』を起動します。
- ② 図 33 のような画面が表示されます。計測データをファイ ルに保存する場合には『受信データの保存』にチェック を入れて、ツールバーの『保存ファイル名の指定』をクリ ックして保存先のフォルダ、ファイル名を指定してください。
- ③ 送信機~受信機の通信が確立していることを確認し、ツ ールバーの『計測開始』ボタン(左端)をクリックしてくだ さい。
- ④ 正常に計測ができている場合には、画面に計測データ が表示されます。また、『受信データの保存』がチェック されている場合には指定されたファイルに計測データ が保存されます。送信機~受信機の通信が途絶した場 合にはデータ表示欄に『----』と表示され、データも保 存されません。送信機~受信機間の通信が復旧した時 点でデータの表示と保存が再開されます。
- ⑤ 計測を停止する場合にはツールバーの『計測停止』ボタン(左から2番目)をクリックしてください。

C Wireles	- Wreless Signmit進データ受信 ソフトウェア								
771.HD	W50W) ヘルブ田								
 ・ 数値デー処備存口 ■ 体充为+10-6 ・ ・ ・									
Ch1	-3.99°C	Ch2	V0000.0	Ch3	V0000.0	Ch4	-3.99°C		
	0.000						0.000		
	0.00041		0.000414		0.00001/		0.000414		
Ch5	0.00041	Ch6	0.0004 V	Ch7	0.00000	Ch8	-0.00047		

図 33. WSC 計測ソフトウェアの画面

仕様

0

1. 送信機仕様

一般仕様	
信号入力	シングルエンド・アナログ電圧入力
信号出力	無線または有線で受信機へ出力
電源	DC5~15Vまたは付属 AC アダプタ
消費電力	0.5W 以下
使用温度範囲	0~50°C
使用湿度範囲	10~85%RH(結露しないこと)
外形寸法	102(W)×65(D)×32(H)突起物含まず
質量	約g

アナログ信号入力詳細仕様

チャンネル数	8チャンネル
入力形式	シングルエンド・アナログ電圧入力
入力レンジ	±10V, ±1V, ±100mV, ±10mV
	熱電対(B/E/J/K/N/R/S/T)
	冷接点補償機能内蔵
許容最大入力電圧	$\pm 20V^{*1}$ or $\pm 5V^{*2}$
入力インピーダンス	120k Ω以上
AD 変換分解能	16Bit
変換精度	±0. 1%FS _{typ} (電圧入力時)
	±1.5℃ _{typ} (温度入力時)
サンプリング周期	100mSec

アナログ電圧出力詳細仕様

チャンネル数	8チャンネル
出力形式	シングルエンド電圧出力
出力レンジ	±10V
	スケーリングはソフトウェアで設定
許容負荷抵抗	2kΩ以上
出カインピーダンス	10 印以下
DA 変換分解能	14Bit
変換精度	±0. 5%FS _{typ}
データ更新周期	100mSec

RS232C 出力詳細仕様					
ビット/秒	38400bps				
データ・ビット	8Bit				
パリティ	なし				
ストップ・ビット	1Bit				
フロー制御	なし				
出力フォーマット	テキスト形式				
出力 On/Off 制御	不可				
データ更新周期	100mSec				

USB 出力詳細仕様

USB 規格	USB1.1 Full Speed(12Mbps)
データ出力	専用計測ソフトを使用
データ更新周期	100mSec

2. 受信機仕様

一般仕様	
信号入力	無線または有線で送信機から入力
信号出力	アナログ電圧出力/RS232C/USB
電源	DC8~15V または付属 AC アダプタ
消費電力	3.0W 以下
使用温度範囲	0~50°C
使用湿度範囲	10~85%RH(結露しないこと)
外形寸法	102(W)×65(D)×45(H)突起物含まず
質量	約g

※1:入力レンジが±10V, ±1Vのときに適用されます。 ※2:入力レンジが±10V, ±1V以外のときに適用されます。

3. 送信機~受信機通信仕様

A タイプ/B タイプ共通仕様

通信形態	無線または有線
通信形式	送信機~受信機で1対1通信
通信状態表示	LED 表示
	通信確立時:緑色点灯
	通信途絶時:赤色点灯 t
無線周波数	16 点から選択可能

4. 添付ソフトウェア仕様

供給ソフトウェア	セットアップ・ソフトウェア
	計測ソフトウェア
	受信機用 USB ドライバー
対応OS	Windows98 / me / 2000 / XP
対応パソコン	DOS/V 互換機
	CPU:Pentium3 <i>ф</i> 1GHz以上
	RAM : 256MB 以上
主な機能	送信機のアナログ信号入力レンジ設定
	受信機のアナログ電圧出カレンジ設定
	USB による受信機からのデータ受信

A(近距離通信)タイプ 無線仕様

通信可能距離	屋内 20m _{typ} 屋外見通し 60m _{typ}
無線周波数	本文17頁の表5参照
発振方式	水晶発振制御シンセサイザ方式
変調方式	GFSK
伝送速度	250kbps
送信出力	1mW +10/-30%
送信周波数偏差	±30ppm 以内
受信感度	-93dBm 以下 @0.1%BER(250kbps)
受信方式	ダブルスーパーヘテロダイン

B(中距離通信)タイプ 無線仕様

通信可能距離	屋内 60m _{typ} 屋外見通し 300m _{typ}
無線周波数	本文 17 頁の表 6 参照
発振方式	PLL シンセサイザ方式
データ変調速度	51.9kbps
空中線電力	5mW/MHz 以下
電波形式	スペクトル拡散 直接拡散方式
通信方式	単通信方式

外形図

1. 送信機

2. 受信機

<u>A矢視図</u>

ブロック図

1. 送信機

2. 受信機

Wireless Sigcon 取扱説明書

2013年4月1日 第2版

(c)株式会社 イージーメジャー

Sensor is source of technology

株式会社 イージーメジャー

PJ 営業グループ 〒812-0888 福岡市 博多区 板付2丁目11-16 Tel 092-558-0314 Fax 092-558-0324 http://www.easy-measure.co.jp/

WSC-7937(2)

2013.4.1